Fluctuations and pattern formation in self-propelled particles.

نویسندگان

  • Shradha Mishra
  • Aparna Baskaran
  • M Cristina Marchetti
چکیده

We consider a coarse-grained description of a collection of self-propelled particles given by hydrodynamic equations for the density and polarization fields. We find that the ordered moving or flocking state of the system is unstable to spatial fluctuations beyond a threshold set by the self-propulsion velocity of the individual units. In this region, the system organizes itself into an inhomogeneous state of well-defined propagating stripes of flocking particles interspersed with low-density disordered regions. Further, we find that even in the regime where the homogeneous flocking state is stable, the system exhibits large fluctuations in both density and orientational order. We study the hydrodynamic equations analytically and numerically to characterize both regimes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instabilities, pattern formation, and mixing in active suspensions

Suspensions of self-propelled particles, such as swimming micro-organisms, are known to undergo complex dynamics as a result of hydrodynamic interactions. To elucidate these dynamics, a kinetic theory is developed and applied to study the linear stability and the nonlinear pattern formation in these systems. The evolution of a suspension of self-propelled particles is modeled using a conservati...

متن کامل

Spontaneous Segregation of Self-Propelled Particles with Different Motilities

We study mixtures of self-propelled and passive rod-like particles in two dimensions using Brownian dynamics simulations. The simulations demonstrate that the two species spontaneously segregate to generate a rich array of dynamical domain structures whose properties depend on the propulsion velocity, density, and composition. In addition to presenting phase diagrams as a function of the system...

متن کامل

Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations.

We use kinetic theory and nonlinear continuum simulations to study the collective dynamics in suspensions of self-propelled particles. The stability of aligned suspensions is first analyzed, and we demonstrate that such suspensions are always unstable to fluctuations, a result that generalizes previous predictions by Simha and Ramaswamy. Isotropic suspensions are also considered, and it is show...

متن کامل

Light-activated self-propelled colloids.

Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap trigger...

متن کامل

Collective motion of rod-shaped self-propelled particles through collision

Self-propelled rods, which propel by themselves in the direction from the tail to the head and align nematically through collision, have been well-investigated theoretically. Various phenomena including true long-range ordered phase with the Giant number fluctuations, and the collective motion composed of many vorices were predicted using the minimal mathematical models of self-propelled rods. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 81 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010